Research Seminar Course Syllabus

This course contributes to the Degree of MSc in Computer Science

Title of the Academic Program	Master's Degree Program "Digital intelligent control systems" (delivered in English)		
Type of the course	core /mandatory		
Course period	2 semesters First semester: from February, the 1st to June, the 1st (18 weeks) Second semester: from October, the 1st to February, the 1st (18 weeks)		
Study credits	8 ECTS credits		
Duration	288 hours		
Language of instruction	English		
Academic requirements	 BSc degree in Computer Science or equivalent (transcript of records), good command of English (certificate or other official document). 		

Course Overview

Description

"Research Seminar" is a core course.

The aim of this course is twofold: one, to allow you to make progress on your research in a structured way and to help fulfill program requirements, and two, to present professionalization information crucial to success in the field. At first, students have a discussion and make the presentation of a draft of a research paper. The course is organized largely around working on the research paper, with the goal of making it a conference-presentable and journal-publishable work. Topics covered include abstracts, publishing, handouts, presentation skills, course design, creating and maintaining a cv, cover letters, webpages, and in general everything that is required for you to successfully compete for jobs in intelligent computer system.

The aim of the course is to guide students through the process of writing a master thesis. This demands ability to link research question, research strategy, theory and methodology of experiment. The seminars in this course will help the students make a research and write a master thesis. Students will use the knowledge gained from course.

Course Objectives

- to teach students to identify a research problem or research question;
- to familiarize students with the methodology of working with primary sources and performing patent searches;
- to familiarize students with the main body of the master's work;
- to teach students to present and discuss their own work;
- to teach students to read and comment on the work of other students;

• to familiarize students with the basic principles and requirements for submitting a dissertation for defense.

Learning Outcomes of the Course

By the end of the course, students will know:

- writing a thesis and an article outline;
- references and research ethics;
- prepare a presentation of science project.

By the end of the course, students will be able to:

- define a research problem or research question;
- build a scientific argument;
- present and discuss own work;
- read and comment upon another students' work.

By the end of the course, students will possess:

- independent work, critical/analytical thinking;
- use scientific methods to analyze technical dimensions of knowledge and technology.

Course Structure

Learning Activities	Hours
Lectures	-
Seminars	36
Assignments	216
Final Exam (including preparation)	36
Total study hours	288

Detailed Schedule

Week	Seminars/ Assignments	Hours
		Sem/HA
	Semester 1	
1-2	Survey of the subject area of research. Search and selection of a personal area of interest. Review of sources in the subject area of research.	2/8
3-4	Presentation of the results of the analytical review in the selected area of interest. Collective discussion of the research topic.	2/8
5-6	Development of a research plan. Discussion of the main idea for the practical implementation of the research results. Collective brainstorming to shape the proposed scientific novelty of the research.	
7-8	Review of patents and presentation of the results of the patent search.	2/8
9-10	Preparation of the theses of the report and overview presentation of the project.	2/16
11-13	Development and filling of the project's WEB-site.	2/16
14-16	Development of a dissertation plan, formation of a list of the main sources used and design of the first section of the dissertation.	
17-18	Preparation of an article based on the results of the work. Project presentation for collective discussion.	2/8
	Semester 2	
1-2	Development of the required models and the formation of a list of basic metrics for modeling technical solutions on the research topic.	2/8
3-4	Presentation of the second section of the dissertation. Preparation of an article based on the results of model development. Preparation of an application for an intellectual property object.	2/8
5-6	Development of a plan for experimental testing of the solutions obtained. Creation of a research engineer's workplace in laboratory conditions. Presentation of the laboratory test bench.	2/8
7-8	Development of report abstracts on the practical implementation of elements, assemblies and embedded software in laboratory conditions. Experimental development of the obtained technical solutions.	2/8
9-10	Preparation of an article based on the results of practical development of the obtained technical solutions.	2/16
11-13	Development and presentation of the third section of the dissertation based on the results of experimental testing.	2/16
14-16	Comparative analysis of the expected and obtained results of the dissertation work. Proof of the alleged scientific novelty of the research. Presentation of the fourth section of the dissertation.	4/16
17-18	Complex presentation of dissertation work.	2/16
	36	288
36	Final Exam	36

Course Instructor and Tutor, contact information

Oleg V. Nepomnuashchiy,

Ph.D. in Engineering, Professor, Head of Computer Science Dept, School of Space and Information Technologies Siberian Federal University

e-mail: ONepomnuashy@sfu-kras.ru Google https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q= непомнящий+олег+владимирович&btnG= Additional information is available at: https://structure.sfu-kras.ru/node/2153

Assessment

Assessment strategy	Points, max	Evaluation criteria
Personal project	60	Presentations, thesis, articles, the dissertation.
Final exam	40	Complex presentation of the project.

Grading policy for final assessment is:

- A (excellent work) 91–100 points
- B (above average) 81–90 points
- C (average) 71–80 points
- D (below average) 50–70 points
- F (failed) < 50 points

Attendance Policy

Students are expected to attend classes regularly.

Every topic involves an assignment. A written report on the assignment should be submitted within two weeks from the moment students received a list of problems. The final mark will rely on the same grading policy as for the final exam.

Web page of the course

Course materials and required reading materials are available on the webpage of the course <u>Research</u> <u>Seminar</u>, SibFU E-learning portal, <u>www.e.sfu-kras.ru</u>. You must be logged in to access this course. <u>https://e.sfu-kras.ru/course/view.php?id=31564</u>

Core reading

- 1. Jan Recker. Scientific Research in Information Systems. A Beginner's Guide. Springer International Publishing. 2013., p.164. ISBN 978-3-642-30048-6.
- David Hitchcock. Patent searching made easy: how to do patent searches on the internet & in the library. Sixth edition. Berkeley, CA: Nolo, April 2013 p.257. ISBNs: 9781413318722, 141331872X, 9781413318739.
- 3. Yvonne N. Bui. How to Write a Master's Thesis. Third Edition. SAGE publications, Inc. 2020. p.298. ISBN-13: 978-1506336091, ISBN-10: 1506336094.

Facilities, Equipment and Software

Internet access; Microsoft Office[®].