Cavitation technologies for marine and groundwater desalination, wastewater treatment

Dusic mitor mation	
Duration (ECTS)	360 hours (10 ECTS)
Starting date	October, 1
Language of instruction	English level B1 (European Framework for Reference of
	Communicative Skills)
Entry requirements	BSc or MSc degree in Environmental Sciences, Engineering,
	Chemistry or Physics

Basic information

Course description

The course "Cavitation technologies for marine and groundwater desalination, wastewater treatment" is designed to introduce students to the principles of construction and exploitation of cavitation technologies and technological systems used for intensification of heat and mass transfer. Such technological systems are based on thermo-hydrodynamic effects of bubble cavitation and supercavitation principles. During the course students will learn about modern cavitation technology, which is one of the most efficient and productive technologies widely applied in industry.

Special Features

The course provides a detailed understanding of waste water conditioning issues and original research outcomes obtained with underground and marine water desalination (desalting) assays. The challenge of freshwater scarcity, issues of waste water recycling, closed-loop control systems and sustainable development have led to increasing global demand for professionals equipped with special skills developed through study of the course.

Course aim

The aim of the course is to equip students with the range of practical and applied environmental skills, required for managing cavitation technologies and designing energetically and economically efficient desalination equipment using the latest data from experimental studies of supercavitation flows with steam extraction from supercavity.

Course objectives

- to make students familiar with the method of supercavitating evaporation, which is one of the most efficient methods that helps to reduce scaling and contamination caused by heat transfer through a solid thermalconducting wall in the process of water evaporation;
- to give students a detailed understanding of flows simulation techniques applied for systems with supercavitating flows; calculations for supercavitation (SC-) devices with various constructions are demonstrated;

• to provide specific practical recommendations about the usage and application of SC-devices in industry, to propose possible technological schemes for specific branches of industry.

Learning outcomes

After successful completion of the course a student should:

- know theoretical basis of cavitation technology, methods of physical and mathematical simulation and numerical calculation of supercavitation flows in technological devices;
- realize the importance of issues related to provision of population and industry with drinking and technical water;
- practically use methods of calculation and design of SC-devices for various purposes, including desalination of saline water and waste water treatment;
- be able to formulate original ideas and to propose solutions for engineering problems taking into account the latest achievements in hydrodynamics.

Week	Lectures	Seminars	Hours
1-3	Occurrence of cavitation kernels.	Calculation of resistance for differ-	36
	Properties of water and its cavita-	ent liquids in various environmental	
	tion resistance. Non-equilibrium	conditions (temperature, pressure)	
	model of cavitating liquid.		
4, 5	Molecular structures of water.	Experimental study of physi-	54
	•	cal/chemical properties of water under	
	Turbulent fluctuations and mixing.	cavitation.	
	Changing physical/chemical prop-		
	erties of under the influence of		
	cavitation.		
6	Types of cavitators. Flow-	Study of SC-devices structures and	72
	cavitation reactors, SC-pumps, etc.	methods for their design and calcula-	
	Methods of calculation and design.	tion.	
7, 8	Mathematical 3D modeling of su-	Technology of physical, phenomeno-	36
	percavitation flows in technologi-	logical and numerical simulation of	
	cal devices. Boundary value prob-	supercavitation flows based on mod-	
	lem and the modified similarity	ified similarity rule.	
	rule.		
9, 10	Freshwater conditioning: desalting	The influence of cavitation treatment	54
	devices based on SC-evaporators,	on wastewater, its composition and	
	mathematical models of processes	production of fresh water. Experi-	

Outline of content

	in a SC-evaporator, analysis of working processes in SC- evaporator, supercavitating evapo- rating devices for fresh water pro- duction.		
11,		Numerical calculations of rotary SC-	
12	evaporators. Mathematical models	evaporators (RSCE) characteristics.	
	of RSCE and selection of cavitator		
	form.		
13,	Numerical simulation of supercav-	Numerical calculations of rotary SC-	54
14	itation flow in RSCE. Supercavita-	pumps characteristics.	
	tion pumps.		
15-18	Technological applications of cav-	Application experience of cavitation	54
	itation technology: production of	technologies in various industrial	
	new nano-materials, dispersion of	processes.	
	minerals, emulsification and slur-		
	rying of water-fuel mixtures, ap-		
	plications in agriculture, medicine,		
	construction industry, and more.		

Course assessment

Written and oral examination after completion of the course.

Attendance policy

Organization of individual studies is performed in accordance with the schedule of educational process. Recommended literature should be studied to operate on the topics listed above. Assignments given after lectures are used for the monitoring of the educational process.

Contact information

Vladimir Kulagin, Doctor of Technical Sciences, Professor, Room D 3-24, 26a Kirenskogo str., Krasnoyarsk, 660074, Polytechnic Institute, SibFU, tel. +7 (391) 291-22-12, E-mail: <u>vkulagin@sfu-kras.ru</u> <u>http://journal.sfu-kras.ru/en/series/technologies/editor</u> <u>http://polytech.sfu-kras.ru/structure/FE/TTiGGD/sostav.php?id=25</u>