Digital Signal Processing Course Syllabus

Basic Information

This course contributes to the requirements for the Degree of MSc in <u>Computer</u> <u>Science</u>

Title of the Academic Program	Master's Degree Programs in English "Digital signal processing"		
Type of the course	core /mandatory		
Course period	2,3 semester from October 1st till June 1st (36 weeks)		
Study credits	8 ECTS credits		
Duration	288 hours		
Language of instruction	English		
Academic requirements	 BSc degree in Computer Science or equivalent (transcript of records), good command of English (certificate or another official document) 		

Course Overview

Description

"Digital signal processing" is an core course.

Course starts from the basic concepts of discrete-time signals and proceed to learn how to analyze data via the Fourier transform, how to manipulate data via digital filters and how to convert analog signals into digital. The solid theoretical bases are complemented by applied examples in Matlab. Design and lab exercises are also significant components of the course.

Special Features of the Course

In order to facilitate learning process, the Matlab Simulink software is used throughout the course. Some practical or almost actual environment problems and solutions are provided.

Course Aim

The aim of the course is to introduce the basic principles, techniques, and applications of digital signal processing and to motivate and prepare students to apply them for research projects and for further study within advanced courses in professional fields.

Course Objectives

- To introduce students basic techniques in designing and implementing digital signal processing systems.
- To learn basic methods of spectral analisis.
- To explore the data communication systems.
- To teach students to design digital filters.

Learning Outcomes of the Course (module)

By the end of the course, students will know:

- how to design digital filters;
- how to extract features from digital signals and manipulate them;

By the end of the course, students will be able to:

- programming in Matlab script language.
- use Matlab and Simulink tools.

By the end of the course, students will possess:

• to develop DSP applications completely themselves using professional tools.

Course Structure

Learning Activities	Hours
Lectures	36
Practice sessions / Seminars,	36
Self-study Assignments	180
Final Exam (including preparation)	36
Total study hours	288

Detailed Schedule

Week	Lectures	Practice sessions /	Hours ¹			
Assignments Lec/Lab/HA Semester 1						
1-4	Basics of Digital Signal Processing Sampling and Quantization, Kotelnikov / Nyquist–Shannon sampling theorem. Amplitude, phase, frequency. Periodic signals, aliasing.	Sampling and quantization. Matlab Simulink tools overview.	4/4/18			
5-10	Inroduction to The Fourier Transform Properties of the Fourier Transform. Digital Fourier transform,	Using the Matlab Signal Processing Toolbox in spectral analysis task.	4/4/18			
11-14	Fast Fourier Transform algorithms FIT, DIT. Window functions.	Digital window Fourier transform, Using window functions.	4/4/18			
15-16	Correlation Analysis Cross Correlation and Autocorrelation	DSP System toolbox functions	2/0/6			
17-18	Wavelet transform Wavelet digital transform, Wavelet continuous transform. Orthogonal basis. Types of wavelets.	Introduction to the Matlab Wavelet Toolbox	2/4/12			
Semester 2						
19-23	Discrete Time Systems Filter classification in the frequency domain, FIR and IIR filters. Transfer function, Impulse Response, Convolution. Design of filters by windowing.	Processing signals with a digital filter via Matlab functions. Displays amplitude frequency characteristics.	6/6/36			
24-26	The Z-transform Properties of the z transform. Poles, Zeros. Pole-zero diagram and frequency response.	Lowpass filter design in Matlab Filter design toolbox Displays the poles and zeros of the transfer function.	4/4/18			
27-32	Modulation and demodulation Amplitude and Angle Modulation. Quadrature modulation. Deviation. Spectral characteristics.	Generate the modulated carrier signal using AM, FM, PM.	4/4/18			
33-36	Digital Communication Systems PWM, Keying, Symbol rate, Constellation and Scatter plots. QAM. Filter shaping. Sigma-Delta modulation	Manipulate digital data for transmission.	6/6/36			
	36	36	252			
36	Final Exam		36			

¹ Hours designed for Classroom sessions, Web-sessions, Home Assignments etc.

Course Instructor and Tutor, Contact information

Maxim S. Medvedev,

Ph.D. in Engineering, Associate Professor of Computer Science Dept, School of Space and Information Technologies, Siberian Federal University.

e-mail: mmedvedev@sfu-kras.ru Google Scholar page: https://scholar.google.ru/citations?hl=ru&user=3ruWMfQAAAAJ

Assessment

Assessment strategy	Points, max	Evaluation criteria
Tests	30	Test questions
Lab works	40	Practical questions
Final exam	30	2 questions that require preparatory reading and knowledge of the concepts explained

Grading policy for final assessment is:

- A (excellent work) 91–100 points
- B (above average) 81–90 points
- C (average) 71–80 points
- D (below average) 50–70 points
- F (failed) < 50 points

Attendance Policy

Students are expected to attend classes regularly. In case of missing an in-lab activity a student should perform additional work submitted to the instructor within a week after a class was missed.

Every topic involves an assignment. A written report on the assignment should be submitted within two weeks from the moment students received a list of problems. The final mark will rely on the same grading policy as for the final exam.

Web page of the course

Course materials and required reading materials are available on the webpage of the course <u>Digital</u> <u>signal processing</u>, SibFU E-learning portal, www.e.sfu-kras.ru . You must be logged in to access this course. <u>https://e.sfu-kras.ru/course/view.php?id=31454</u>

Core reading

1. Richard G. Lyons. Understanding Digital Signal Processing, Third Edition, Pearson Education, Inc, 2012. p.667. ISBN-13: 978-0-13-702741-5, ISBN-10: 0-13-702741-9

2. A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing (Prentice-Hall Signal Processing Series) 3rd Edition, 2021. p.861, ISBN-13: 978-0131988422, ISBN-10: 0131988425

3. Dick Blandford, John Parr. Introduction to Digital Signal Processing. Pearson Education, Inc, 2013, ISBN: 978-0-13-139406-3

4. Jonathan (Y) Stein. Digital Signal Processing: A Computer Science Perspective. John Wiley & Sons, Inc ISBN:9780471295464

5. Michael Weeks. Digital Signal Processing Using MATLAB & Wavelets. Jones & Bartlett Publishers, 2011. p.492

Facilities, Equipment and Software

Software: Matlab MS Office® / Libre Office®;